Brief Instruction

qDPC calculates phase distribution from DPC signals

[1] Ishizuka A., Oka M., Ishizuka I., Seki T and Naoya Shibata N. Microscopy 66, 406 (2017)
[2] Close R., Chen Z., Sbibata N. and Findlay S.D. Utramicroscopy 159, 124 (2015)
[3] Lazic I., Bosch E.G.T and Lazar S, Utramicroscopy 160, 265 (2016)

The dialog on the left will appear for the commands to retrieve the phase distribution from DPC signals. Here, you can change the y direction.

Field Vector Map sub-menus

Create Vector Map

On/Off Arrows
Show Color Wheel...
Setup...

Scan direction: | 0.0 |
| :---: |
| Degree |

Normalize Check

OK
Cancel

Adjust DPC Signal dialog

58, Adjust DPC Signal		\times
-DPC Signal Selection		
Dx	G: untitled_W	\checkmark
Dy	F: untitled_S	\checkmark
		Zero Level Sgnal Slope
	OK	Cancel

When there is a rectangle ROI on one of the DPC signals, the DPC signals are adjusted based on the signals with in the ROI. Otherwise, the DPC signals are adjusted based the whole area.

Using the ROI placed at a homogeneous area, you can adjust the DPC signals, even when there is, for example, an interface in the image.

Appendix

Relation between scan-direction and detector

$$
\begin{aligned}
& D_{X}=\cos \left(\text { theta) } \times D_{H}-\sin \left(\text { theta) } \times D_{V}\right.\right. \\
& D_{Y}=\cos (\text { theta }) \times D_{V}+\sin (\text { theta }) \times D_{H}
\end{aligned}
$$

Quadrant detector

$\mathrm{D}_{\mathrm{H}}(\mathrm{Q})=\mathrm{B}-\mathrm{D}$
$\left.\mathrm{D}_{\mathrm{V}} \mathrm{Q}\right)=\mathrm{C}-\mathrm{A}$
$D_{V}(Q)=C-A$

$$
D_{V}(S)=(C+D)-(A+B) \quad D_{H}(S)=(B+C)-(A+D)
$$

