Numerical Procedures to determine Potential Distribution from Electronic Field
Vectors observed in Differential Phase Contrast (DPC) imaging
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Recently, the differential phase contt (DPC) imaging in STEM becomes a hot topic, sincethenthe
possibility of the DPC imaging at atomic resolution has been demonstratéich§lidea of theDPC
imaging in STEM was proposed by Dekker and de Lan{f] and mainly used for a study of magnetic
materialin a medium resolutiofi3]. Miiler et al. showed thatthe expectation value of the momentum
transfer, whichequalsto a center of mass (COM) of the scattering distribution, igroportional toan
electric field[4]. Thus, the COM signal corresponds to the DPC signain the first moment detector
that wagdiscussed by Waddell and Chapman [5]. Fpuephase object the COM signal is proportional

to a gradient of the object phase. Thushe DPC experiment opens up the pos$igjbto observe an
electrostatic potentialf a sample, since the object phase is proportional to a projected electricpotential.

We may note that we have to solve the object phase that satisfies two COM $igoaly! x =1, (xy)
and d¢(xy)/dy =1 (xy). Close et al. proposed the formula for the phase by combiningthe two DPC

signalsin Fourier space [5]

27i (kx +iky)FT[! ()] = FT[1,(xp)] +iFT[1 (xy)]. (1)
On the other handve may note that */ (xy)=! " I (xy)="! I (xy)+! ,1,(xy). Lazic et al. proposed
the formulacorresponding thPoisson equatiofor the phasén Fourier spacés]:

21K +kx2)FT[! )] =k FT[1.(xy)] +kyFT1'|y(xy)§. (2)

We may note that Eq. YXbecomesdenticalto Eq. (9 only whenk FT[I (xy)]=kFT*l (xy)&. Thisis
equivalent tathe integrability conditionin real space! I, (xy)/! y="1(xy)/! x, whichis the necessary

condition to find the object phase. In other woigg, (1) will give the solution that does not satisfy the
integrability condition. The solution based orEq. (1) or (2)is usually obtained by usindgast Fourier
transform (FFT). However, the FFT assumes the periodic boundary condition that will introduce a
unwanted background to the soluti@inEq. (2)(the Poisson equatian Fourier space

Although the Poisson equation requires the boundary tiondisay, Dirichlet or Neumann conditign)

in general we cannot measure the boundary values of an unknown solution. However, in our case
observables are not the Laplacian, the differentials(COM signals)of the solution (electrostatic
potential). Thus, we can use the Neumann boundary condition that is the differentials of the solutio
perpendicular to the boundary. In this case, the eigenfunction is cosine, and we can use the discrete
cosine transform (DCT) instead of the solver based on the Rfidhwssumes the periodic boundary
condition. Figure 1 compares the results obtained with the DCT andHeFd, we try to retrieve the
original model data fronthe two noiseaddedderivatives calculated along x- and ydirections of the
model (Fig. 2a)The size of the noise is 10% of the#l range of each derivative.

We havealsodevelopedhe reaktime routine that directlyntegrate the observed two COM signais
real space, andpdatesthe electrostatic potential (phas@)ap during the progress of the scanin



principle, theoriginal functionwill be uniquely determined bgn integral of the differentiak of the
function on an arbitrary path. Thus, if the signal has no noisecaneeasily estimatehe original
function over a simple path. Howevewhen the noise is exist, the integrals on different paths give
different valuesThus, we devised a retiine routine that estimates a reliable value by integrating over
many paths during the progress of the s€&gure 2showsthe results obtained ks smple routineand

the involved routine Here, the size of the noisealks010% of the range of each derivative.
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Figure 1. Retrieved mapsbtainedfrom the x and yderivatives usinga) DCT, (b) FFTbased on Eq.
(2) and (c) FFT based on Eq. .(Isee Fig. 2a for the original data)
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Figure 2. Real-time integration from the x- and y-derivatives (a) Original model data Retrievedmaps
obtainedby (b) thesimple routine that integratesongthe verticaldirectionand (¢ thenewroutinethat
integrats on many integration paths.



