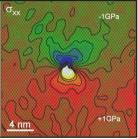


DigitalMicrograph Plug-in

lattice expansion map from multi-spots


Geometrical Phase Analysis

Lattice Deformation and Strain Analysis

GPA generates fully quantitative deformation and strain maps from HR(S)TEM images.

GPA is based on geometric phase algorithms originally developed by Martin Hÿtch [1].

Key Features

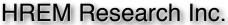
 Determines geometric phase images using choice of masks and real-space averaging [1]

◆ Generates 2D deformation tensor from HR(S)TEM images (see left for local rotation map from HRTEM image [2])

Allows calculation of color maps and contours of strains (see above right for stresses around an edge dislocation [3])

• Corrects for optical distortions due to the projector lens system of the electron microscope [4]

• Generates strain tensors from multi-spots analysis (see bottom for lattice expansion map obtained from seven spots)


References:

[1] M.J. Hÿtch, E. Snoeck and R. Kilaas, Ultramicroscopy 74 (1998) 131-146. Quantitative measurement of displacement and strain fields from HREM micrographs [2] C. L. Johnson, M. J. Hÿtch, P. R. Buseck, PNAS 101 (2004) 17936-17939. Nanoscale waviness of low-angle grain boundaries

[3] M. J. Hÿtch, J-L. Putaux, J-M. Pénisson, Nature 423 (2003) 270-273. Measurement of the displacement field around dislocations to 0.03Å by electron microscopy

[4] F. Hüe et al. J. Electron Microscopy 54 (2005) 181-190. Calibration of projector lens distortions

www.hremresearch.com / support@hremresearch.com / +81(493)35 3919 HREM Research Inc.

