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Introduction 

The recent development of a hardware aberration corrector for transmission electron 
microscope has significantly improved the attainable resolution [1]. On the other hand, 
aberration can be a posteriori corrected, when we reconstruct complex wave function from 
a series of through-focus images taken with a non-Cs corrected microscope [2,3]. 
Importantly, a focal series reconstruction (FSR) gives an aberration-corrected complex wave 
function at the specimen exit surface, while a hardware aberration corrector gives only 
intensity distribution of the wave function. However, aberration corrected image obtained 
by using hardware or software is ultimately limited by the partial coherence of electrons 
(information limit).  

Tilt Series Reconstruction  
A promising method to improve resolution beyond the information limit is a tilt series 
reconstruction (TSR), where several images are recorded with different beam tilt [4]. Figure 
1 compares the normal incidence (left) and tilted incidence (right). The orange-colored 
arrow shows the incident beam direction. Here, the optic axis is vertical in both figures. 
Thus, if we tilt the incident beam direction, we can collect information from higher 
diffraction angles with the same or less amount of wave aberration than the normal incident 
case.  
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following two approximations:  
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Conclusions 
We have derived the formula for physical parallax due to a tilted illumination by taking into 
account kinematical scattering. Physical parallax decreases with the tilt angle up to the 
optimum tilt angle for a given resolution contrary to geometrical parallax. Even when we 
improve resolution twice of the FSR using the TSR, we can still use a 1.5-times thicker 
sample than the FSR. These conclusions may be surprised in terms of the geometrical 
parallax. However, the TSR collects information on a diffraction plane over a wider area by 
an aperture synthesis. Then, using the Fourier projection theorem the TSR will give a better 
projection of a sample. Thus, the parallax due to sample thickness may not be a limiting 
factor for the TSR.  

Figure 5  Maximum sample thickness for 200 kV electrons. Broken and solid lines correspond to geometrical 
parallax and physical parallax, respectively. Black, blue, green and red lines correspond to the resolutions d = 
0.10, 0.08, 0.06 and 0.04 nm (α  = 25.0, 31.3, 41.7 and 62.5 mrad), respectively. You may note the complete 
difference of the maximum thicknesses estimated from geometrical parallax and physical parallax. 

However, information collected from a single tilted illumination is asymmetric (directional) 
in Fourier space as shown in Figure 2 (left). This asymmetry will be alleviated by collecting 
information from a tilt series, where the azimuth of the incident beam direction is changed 
as shown in Figure 2 (right). Since this is an ‘aperture synthesis’, we can improve resolution 
substantially. The sophisticated TSR procedure including a short focal series has been 
already developed [5], and is commercially available [6].  

Figure 1  Comparison between the normal incidence (left) and tilted incidence (right). The 
orange-colored arrow shows the incident beam direction. Here, the optic axis is vertical. 
Thus, if we tilt the incident beam direction, we can collect information from diffractions with 
the same or less amount of wave aberration than the normal incident case,  

Figure 3   Geometrical parallax. In the case of the normal illumination there is no displacement of the 
top atom projected onto the bottom surface. Contrary to this, under the tilted illumination the atom at the 
top surface will be projected onto the bottom surface displaced by s relative to the atom at the bottom 
surface. This displacement gives an upper limit of the sample thickness. 

Physical Parallax 

Physical parallax may be argued as a limit of the specimen thickness, with which a 
projection approximation will be satisfied. We discuss here physical parallax by taking into 
account kinematical scattering with a thin sample of thickness t. Figure 4 illustrates the 
Ewald construction for a tilted illumination, where we assume the diffraction plane (the zero 
order Laue zone) is parallel to the specimen slab. Here, τ is the tilt angle, λ* (=1/λ) the 
radius of the Ewald sphere, gmax the resolution limit. The intersection between the Ewald 
sphere and the diffraction plane gives the Laue circle (orange circle), whose center is located 
at A, and ζ and ζτ correspond to excitation errors (distances between the diffraction spot 
center and the Ewald sphere) at the scattering vectors gmax and g/2, respectively. We may 
note that under kinematical approximation the scattering distribution in Fourier space will 
elongate approximately by 1/t perpendicular to the specimen slab. Thus, the optimum tilt 
angle in terms of the kinematical scattering is given at ζ = ζτ. 
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Figure 2  Information collection in Fourier space with single tilted beam (left) and multiple 
tilted beams (right). The former collects information asymmetrically in Fourier space, 
while the six tilted beams collect information nearly symmetrically.  

However, it has been argued that the use of tilted illumination introduces a serious 
limitation on a specimen thickness by a parallax problem [7]. We will study the previous 
discussion for the geometric parallax, and derive a new estimate of an allowable specimen 
thickness in the case of the tilted illumination.  

Geometrical Parallax 

Under a normal illumination the atom at the top surface will be projected onto the atom at 
the bottom surface (Figure 1_left). However, under the tilted illumination the atom at the 
top surface will be projected onto the bottom surface displaced by s relative to the 
equivalent atom at the bottom surface (geometrical parallax) (Figure 1_right). Here, the 
displacement is approximated by s=t.τ, where t is the specimen thickness and τ a tilt angle. 
In order to resolve a periodicity d the geometrical parallax s may be limited by d/2. Thus, a 
maximum thickness imposed by the geometrical parallax will be d/2τ. The same conclusion 
has been derived using the phase shift between the points on the top and bottom specimen 
surfaces due to a beam tilt [7]. We may note however that this geometrical parallax is 
independent of an accelerating voltage (or a wavelength), and allows a sample of infinite 
thickness for a normal incident (τ=0) as shown in Figure 5.  

Figure 4  Ewald construction for a tilted illumination. Here, τ is the tilt angle, λ* the radius 
of the Ewald sphere, gmax the resolution limit,  ζ  and ζτ  excitation errors. The scattering 
distribution in reciprocal space elongates perpendicular to the specimen slab.  

The following two equations will be observed, when we apply Pythagorean theorem to the 
triangles               and                :  !EOA !ECB
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where Then, for small angle scattering they respectively reduce to the !gmax = gmax ! g 2( ).
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At the optimum tilt angle the maximum thickness is given as                                 and the 
optimum tilt is given                                             Thus, for the same resolution  the TSR can 
be applied to a 5.8-times thicker sample than the FSR. Even when we improve resolution 
twice of the FSR using the TSR, we can still use a 1.5-times thicker sample than the FSR.  
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For the tilt angle larger than the optimum tilt the maximum thickness will be determined by 
the excitation error ζτ as                                   Thus, after the optimum tilt for each 
resolution gmax, the maximum thickness is inversely proportional to the square of the tilt 
angle. Thus, it is not a good idea to use the tilt angle larger than the optimum tilt for each 
resolution. 
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This is a general formula, and gives a correct thickness limit             for the normal 
incidence (τ=0) (Figure 1). Figure 5 shows the maximum sample thickness given by 
physical parallax as well as the geometrical parallax. We may note that physical parallax 
decreases, and thus the maximum sample thickness increase, when the tilt angle is increased 
up to the optimum tilt angle, where ζ = ζτ.  
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If you would like to discuss on this topic, please visit Exhibition Booth #512 
at any time.	
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Using these approximations and the two simple relationships:                      for a small tilt 
angle, and              for the excitation error at gmax for a tilt angle less than the optimum tilt 
(          ), we finally get the expression for the maximum thickness as a function of the beam 
tilt τ and the resolution gmax:  
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The geometrical parallax (d/2τ)  will be obtained for the high accelerating-voltage limit, 
where the Ewald sphere becomes flat plane.  Here,                                    Thus, the 
maximum thickness is given by  

!" = " g 2( ) and ! = "gmax.
1 t ! 2! = 2"gmax = 2" d.


